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Abstract—Analogue models of VLSI interconnect in complex
digital systems pose significant design challenges due to their size,
often exceeding thousands of discrete nodes, and their tightly coupled
structure. Such models need to be formulated and solved in the
analogue domain to ensure high accuracy of interconnect effects
such as signal delays and signal-to-signal interference. Currently
available design tools are inadequate for simulating such systems
due to prohibitive CPU times. This paper presents a technique which
takes an advantage of the passive nature of interconnect such that
simulations of large interconnect systems can be accelerated by about
an order of magnitude compared with equivalent SPICE simulations.
The acceleration is possible due to the use of explicit integration
of the interconnect state equations were a fast estimate of the
maximum allowed step-size is used to guarantee numerical stability.
We show that a parallel implementation of the proposed algorithm
is straightforward on GPU architectures and compare the results
with those obtained from both standard and GPU implementations of
SPICE. Several case studies are presented to illustrate the speed of
the proposed method and to show that a good match can be obtained
between the accuracy of standard SPICE-like simulations and the
proposed approach. The proposed method has already been tested in
RC interconnect simulations but here, for the first time, we present the
performance of our method when applied to RLC interconnect which
poses significant restrictions on the maximum allowed simulation
step-size necessary to maintain numerical stability,

Index Terms—Simulation acceleration, state-space technique,
many-core computer, GPU.

I. INTRODUCTION

Classical SPICE-like simulators used to analyse the be-

haviour of analogue circuits likerely on the modified nodal

analysis and use implicit integration techniques based on

the Newton-Raphson linearisation method to solve the circuit

analogue equations at each time step. These methods have

proven to be reliable and numerically stable, but on the other

hand, they lead to long CPU times, often hours or even

days and weeks for large circuits. These long simulation

times contribute to delays in the design cycle time. The main

reason for extensive computation times is due the necessity

to build and factorise the Jacobian matrix of the analogue

system multiple times at each time step. In contrast to implicit

integration methods, the computational workload of explicit

integration techniques is lighter. The main disadvantage of

explicit methods is the need to limit the step size to ensure

numerical stability. In a general case of a non-linear analogue

system, where equations are stiff due to the large disparity

T.J. Kazmierski is with the Department of Electronics and Computer Sci-
ence, University of Southampton, Southampton, SO17 1BJ, United Kingdom
e-mail: tjk@ecs.soton.ac.uk

G. Domenech-Asensi is with the Departmento de Electronica y Tec.
de Computadoras, Universidad Politecnica de Cartagena, Cartagena, 30201,
Spain e-mail: gines.domenech@upct.es

of time constants, the step-size limitation may be very severe

and in such cases implicit methods perform better. However,

in the case of VLSI interconnect, equations are not stiff and

what is more, interconnect is passive and usually linear which

simplifies the state equation formulation for explicit methods,

and makes estimates of the maximum allowed step-size easier

and therefore faster. Different works have proved that the use

of state-space equations combined with explicit integration

methods is a suitable technique to speed up transient simula-

tions of many types of analogue circuits [1] or mixed systems

[2]. However, given the increasing complexity of analogue

circuits and systems, new techniques are required to speed

transients simulations, besides the use of alternative integration

algorithms. Among these techniques, those based on exploiting

the parallelisation of analogue integration methods running on

parallel computer architectures are gaining more and more

attention in the recent years. The Compute Unified Device

Architecture (CUDA) [3] proposed by NVIDIA in 2006, is

a programming model that allows engineers to use a high

level programming language such as C to develop algorithms

for general purpose Graphics Processing Units (GPUs). This

has provided design engineers with software tools to use

relatively cheap parallel architecture computers which now can

perform fast simulations in different types of scientific and

engineering applications. Thus, in the last decade, there have

been many proposals to accelerate the simulation of analog

circuits using GPUs e.g. [4]–[7]. Some works have focused

on sparse matrix solvers [8] or LU factorization matrix solver

[9]–[11], which have achieved substantial speedups compared

with traditional parallel sparse solvers like PARDISO [12] or

KLU [13]. NVIDIA also released an official sparse matrix

solver, cuSolver [14], but the LU factorization in it is still

performed on the CPU rather than GPU.

A common characteristic of these works is that they are

focused on the traditional implicit integration methods used in

SPICE-like simulators like. Recently, an explicit integration

method parallelisable over a many-core processors has been

proposed [15]. This method combines space state equations

with a fixed-step explicit scheme based on the Adams-

Bashforth integration formula to speed up the simulation of

passive circuits of a complexity up to 1000 nodes.

In this paper we explore the method proposed in [15] further.

We improve our fast estimate of the maximum allowed step

size and we apply the technique to the RLC interconnect which

poses a harder challenge on the step-size requirements than the

RC interconnect considered in [15] . We show that in the case

of RLC interconnect our method is not only faster than the
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parallel CU-SPICE by up to one order of magnitude for large

systems but it is also significantly more accurate as it avoids

spurious numerical ringing which characterises the implicit

trapezoidal method used as the default integration scheme in

CU-SPICE.

II. STABILITY ANALYSIS

Let (1) be the general state equation of a nonlinear, passive

dynamic system:

ẋ(t) = f(xt, t);x(0) = x0 (1)

As interconnect models are usually linear, the state equation

at time point tk, k = 0, 1 . . . can be formulated as:

Ẋ(tk) = AkX(tk) + Eex (2)

where X the vector of N state variable wave-forms, ex a

vector of excitations and Ak and E are coefficient matrices,

where Ak is the Jacobian of the linearised model at the

time point tk. As the state equation 1 represents a passive

system, the eigenvalues of the Jacobian Ak are guaranteed to

have negative real parts, so explicit methods can be applied

easily to provide a fast integration process. The step-size

in explicit integration must be limited to ensure stability

besides controlling the accuracy of the numerical solution. The

computation of the maximum allowed step-size requires the

computation of the spectral radius of ||A||, a process for which

time-consuming operations such as matrix multiplications and

eigenvalue calculations are performed. In this work we take

advantage of a recently developed fast method to calculate

approximate step-size bounds for stability [2]. Although step

sizes obtained using such approximate techniques are expected

to be smaller than the maximum allowed step sizes calculated

from the exact values of the Jacobians eigenvalues, the advan-

tage of using approximate estimates is speed.

The stability of fixed-step Adams-Bashforth methods is

defined by the well known stability plots shown in figure 1,

where the values of maximum λh which guarantee stability

are plotted in the complex plane. So, while for a first order

method the maximum acceptable absolute value of λh is 2,

for a fourth order method it is decreased to only 0.3. Thus,

although higher order methods are more accurate than lower

order ones, they are also more unstable.

Stability becomes harder to achieve when variable-step

integration is used. Figure 2 shows a finite-difference grid

for a q-order Adams-Bashforth method, where tk is the

current time point, tk+1 is the next time point, Pq(t) is the

interpolation polynomial of order q, and Δx is the unknown

in the integration problem.

Let hi = ti+1−ti be the time step between two consecutive

time points ti and ti+1. In a fixed-step integration method,

all the hi values are equal and invariable in time. However,

in a variable-step method, the values of hi are different, and

change with time. The expressions for the general variable-step

method can be obtained by integrating the divided difference

polynomial approximation between the current variable value

xk ≡ x(tk) and the predicted one xk+1 ≡ x(tk+1).

Fig. 1. Stability regions for Adams-Bashforth methods of order 1 to 4.

Fig. 2. Finite difference grid for the qth-order Adams-Bashforth method.

Δx =

∫ xk+1

xk

dy =

∫ tk+1

tk

[Pq(t)]kdt ⇒

⇒ xk+1 − xk =

∫ tk+1

tk

(
f0 + (x− xk)f

(1)
k + ...

...+ (x− xk)...(x− xk−p)f
(q)
k

)
dt+O

(3)

where f
(q)
k is the qth divided difference of function f at tk [18]

and O is the truncation error. Taking as example the second

order method, the state variable at time tk+1 is computed as:

xk+1 − xk = fkh0

(
1 +

h0

2h1

)
− fk−1h0

(
h0

2h1

)
(4)

being fk = f
(0)
k . For the third order method, the following

term is added to (4):(
t3k+1 − t3k

3
− (tk + tk−1)

t2k+1 − t2k
2

+tktk−1(tk+1 − tk)

)
f
(2)
k

(5)

Figure 3 shows the stability plots for equations (4) and (5)

integrated with different step-size expansion ratios from 1 to

2. The plots show how the variation of the step-size expansion

ratio r = hi+1/hi affects the stability for both the second and
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Fig. 3. Stability regions for the second and third order AB methods.

TABLE I
MAXIMUM REAL NEGATIVE VALUE OF THE STABILITY PLOTS

r 1 1.2 1.4 1.6 1.8 2

Lr(h0) -1 -0.952 -0.909 -0.869 -0.833 -0.8

Lr(h1) -1 -0.794 -0.649 -0.544 -0.463 -0.4

the third order AB methods. The values of the integration step

hi which guarantee stability decrease as the ratio is increased,

being clearly smaller for the third order method. Moreover the

stability is more sensitive to the integration step-sizes further

from the reference point tk + 1 than to h0. So, in order to be

able to manage larger values of hi, in this work the second

order variable step integration method has been used. Table

I shows the intersection (Lr) of the stability plots with the

negative real axis for different values of r for the second order

method.

III. FAST APPROXIMATION OF MAXIMUM STEP-SIZE FOR

NUMERICAL STABILITY

Given a set of linear ordinary differential equations (ODEs)

Ẋ(tk) = AkX(tk) (6)

where A is negative definite and diagonally dominant, the

integration method is numerically stable if the integration step

size h is

h ≤ 1

max
r=1,...,N

(βmax|ar,r|) (7)

where ar,r the diagonal element in row r of A and βmax =
max(|β0|, . . . , |βp|) the modulus of the maximum coefficient

of the pth-order AdamsBashforth formula.

This technique was proposed recently [2] for fast numer-

ical integration of state equations representing many passive

systems. In such systems, the proposed fast estimate of the

step-size h guarantees stability, but there is a trade off. Step

sizes obtained from eq. (7) are expected to be smaller than the

Fig. 4. Transmission line modeled as finite RLC segments.

maximum allowed step sizes that would be obtained from the

exact calculation of the Jacobians eigenvalues.

In the case the Jacobian A is not negative definite but

is symmetric, then max
i=1,...,N

λi = ||A|| and according to the

Gershgorin theorem the values of the eigenvalues are bounded

to λ ≤ ai,i +
∑N

j=1 |ai,j | for i �= j [2]. Given that all the

Jacobian entries are real numbers, we finally obtain that [20]:

h ≤ Lr∑N
j=1 ai,j

(8)

where Lr is the intersection of the stability plot for a given

step-ratio r with the negative semi-axis of the complex plane.

IV. INTERCONNECT WITH INDUCTANCE

Figure 4 shows an interconnect modelled as a series of finite

RLC segments. Given that the currents through the inductors

are state variables, the total number of state variables in an

interconnect track is twice the number required for an RC

interconnect model.

So, the matrix formulation of the transmission line is given

by:

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

i1
v1
i2
v2
...

vn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= R

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

i1
v1
i2
v2
...

vn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎝

1
L1

0
...

0

⎞
⎟⎟⎟⎠ vi (9)

where the matrix R is:

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−R1

L1

−1
L1

0 0 0 0 . . . 0
1
C1

−1
C1G1

−1
C2

0 0 0 . . . 0

0 1
L2

−R2

L2

−1
L2

0 0 . . . 0

0 0 1
C1

−1
C2G2

−1
C2

0 . . . 0
...

...

0 0 0 0 . . . 0 1
Cn

−1
CnGn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

We have performed a number of simulation tests for RLC

tracks of different lengths using the proposed method and

CU-SPICE, the CUDA version of SPICE [19], using the

following component values per discrete section: C = 1fF ,

L = 100pH , R = 10Ω, G = 400Ω−1. The excitation was a

1V step and the responses in the first RLC segment are shown

in figures 5 and 6 for CU-SPICE and our method respectively.
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Fig. 5. SPICE simulation results for the RLC interconnect line in fig 4.

Fig. 6. Simulation results using the proposed technique for the RLC
interconnect line in figure 4.

The step-size in the explicit integration was 10−13sec and CU-

SPICE simulations were performed using two different step-

size limits: 10−10sec and 10−11sec. The spurious numerical

ringing is evident in the CU-SPICE results and is absent,

after the initial transient process, from the results obtained

by the proposed method. In table II we show the CPU times

for both methods, the proposed method with the step size

of 10−13 sec and CU-SPICE with the step-size of 10−11.

CU-SPICE, despite using a step size larger by two orders of

magnitude than that of our method, is significantly slower with

the proposed method reaching a speed up of almost an order

of magnitude for 10,000 RLC segments.

V. CONCLUSION

This paper shows promising results obtained when solving

equations of large VLSI interconnect by means of explicit

integration and state equations. The inclusion of analogue

TABLE II
GPU SIMULATION TIME FOR PROPOSED EXPLICIT METHOD AND CUSPICE

Segments Explicit (s) Implicit (s) Speedup

CUspice

100 80.294 40.537 0.504

200 85.387 48.562 0.568

500 98.019 64.159 0.654

1000 96.768 101.833 1.052

2000 100.729 196.108 1.946

5000 100.522 619.070 6.158

10000 123.041 1068.640 8.685

interconnect models in digital VLSI simulations is increasingly

important as clock frequencies reach 10 GHz and more.

At such speeds the analogue transients which occur in the

interconnect cannot be ignored. As interconnect may constitute

a large part of an analogue or a mixed-signal VLSI system,

the presented method, which accelerates simulations on GPUs

can be a useful approach in the development of modern VLSI

design tools. For the first time, we present here results of

applying the proposed method to interconnect with inductance.

These results are preliminary, as this is still work in progress.

The presented results are merely meant to illustrate the poten-

tial of explicit integration in the solution of vast numbers of

equations representing VLSI interconnect.
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